
MQuery: A Visual Query Language for Multimedia, Timeline,

and Simulation Data

John David N. Dionisio Alfonso F. C�ardenas

Computer Science Department

University of California, Los Angeles

July 25, 1996

Please direct all correspondence to:

Professor Alfonso F. C�ardenas

3731 Boelter Hall

University of California, Los Angeles

Los Angeles, CA 90024

U.S.A.

Phone: (310) 825-7550

Fax: (310) 825-2273

e-mail: cardenas@cs.ucla.edu

1



Abstract

This paper describes a visual query language that can express questions over multimedia, timeline,

and simulation data using a single set of related query constructs. A uniform model for multimedia

types organizes image, sound, video, and long text data in a consistent manner, giving multimedia

schemas and queries a degree of data independence even for these complex data types.

Information that possesses an intrinsic temporal element can all be queried using a construct

called a stream. Streams can be aggregated into parallel multistreams, thus providing a structure for

querying and retrieving multiple sets of time-based information. The uni�ed stream construct permits

real-time measurements, numerical simulation data, and visualizations of that data to be aggregated

and manipulated using the same set of operators.

2



Contents

1 Introduction 4

2 Previous Work 5

3 Data Model Overview 7

4 Sample Application and Prototype 10

4.1 Domain and Requirements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.2 Discussion of Schema : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.2.1 Patients and Health Care Activities : : : : : : : : : : : : : : : : : : : : : : : : 10

4.2.2 Brain, Lesion, and Temperature Streams : : : : : : : : : : : : : : : : : : : : : : 11

5 Query Language 12

5.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

5.2 Schema Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

5.3 Query Formulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

5.3.1 MQuery Visual Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

5.3.2 Insertion Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5.3.3 Retrieval Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

5.3.4 Deletion Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

5.3.5 Update Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

5.4 Output Presenter & Visualizer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

5.5 Implementation and User Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

6 Conclusions and Future Work 28

A Acknowledgments 28

3



1 Introduction

This paper describes the visual query language MQuery that can ful�ll the requirements of such diverse

domains as simulation and validation, medical timelines, and multimedia visualization. Our current

research work in the Knowledge-Based Multimedia Medical Distributed Database (KMeD) project at

UCLA has identi�ed a number of query language needs that come from di�erent application domains.

Background Recent developments in scienti�c databases have identi�ed new data modeling re-

quirements for next-generation scienti�c databases in areas such as:

� Multimedia. Scienti�c data is multimedia in nature: fully visual, frequently multi-dimensional,

and spanning the dimension of time. Our work proceeds in a similar direction as the ones de�ned

or explored in [1, 2].

� Simulation and validation. There is evidence of a greater need to integrate simulation and

database technologies [3]. One bene�t of this integration is the capability to validate simulation

data by comparing it to real-world, measured data using the same query language.

� Timelines. Temporal, evolutionary, and process data models [4, 5, 6] in medicine track the

progress and history of a patient over time, and a large element of science is the study of

processes and their e�ects over time. Scienti�c and medical timelines present the progress of a

tumor, hand bone growth, or other natural process as a series of frames that, properly registered,

may be viewed as a movie or animation clip.

The areas addressed by these application domains are linked by a number of common threads:

� The element of time. Data that change over time | digital video, simulation data, timelines,

etc. | require a database that can represent, query, and visualize this element of time. Better

yet, time must be captured in a uniform construct regardless of the time scale or data type.

� Complex data structures. Objects having complex structures and interrelationships with other

objects are needed in the medical domain. For example, the Uni�ed Medical Language System

(UMLS) is a large and complex semantic network of objects, processes, subjects, synonyms, and

relationships [7]. If current relational data models are used, queries over UMLS are di�cult to

express without using arti�cial or arbitrary keys.

� Multiple representations of objects. Representation of an individual object within a wide variety

of contexts arises for objects like tumors, which may be visible in multiple CT (computed tomog-

4



raphy) scans and MR (magnetic resonance) images. Tumors may be mentioned in lab reports

or voice transcriptions, or represented by tabular simulation data. A conventional database is

capable of storing most of these data types, but much work is required to ensure that a search for

the general concept of a \tumor" leads to every context in which it appears. MQuery attempts

to resolve this issue by making multiple representations a fundamental element of the language.

Contents of the Paper After summarizing MQuery's primary contributions to the �eld, we

discuss the current state of research in this area (Section 2). Then, we proceed with an overview of

the data model upon which MQuery is based (Section 3). Section 4 outlines the application domains for

which we intend to test the functionality of our language. Section 5 discusses the language, including

example queries of various types. Section 6 concludes the paper.

Primary Contributions

� Generalized multimedia queries. We de�ne a general framework for querying all kinds of multi-

media data, including images, sounds, long text, digital video, and integrated timelines. When

applicable, a non-textual approach is employed to make predicates more natural | for example,

drawing an example to retrieve an image or recording a sample to retrieve sounds.

� Generalized time-based queries. MQuery provides a visual interface to the querying of data

stored as time-based streams. In particular, we use time-based streams to query multimedia,

evolutionary, simulation, or timeline data.

2 Previous Work

Visual and multimedia query languages are heavily researched, and they span a wide variety of needs,

objectives, and paradigms. This very high degree of diversity is acknowledged by many researchers in

the �eld, including [8] and [9].

Image Query Languages This category of languages examined includes languages whose pri-

mary goal is to query and process image or multimedia data. Current research shows that only image

data is robustly supported. Databases for querying audio and video data remain the subject of further

research work.

5



PICQUERY emphasizes image retrieval [10] and processing while PICQUERY+ adds object ori-

entation and temporal or evolutionary operators [11]. In both systems, the interface is strictly table-

oriented, and full multimedia data types such as audio and video are not explicitly supported. Our

proposed MQuery language is a logical step forward from PICQUERY+ and the work in [12], an

initial exploration of purely visual image querying.

MQuery di�ers from other systems such as VIMSYS [13, 14], the 3D image work of del Bimbo et.

al. [15], Query-By-Visual-Example (QVE) [16], and Query By Image Content (QBIC) [17]. MQuery

emphasizes the presentation and expression, and not necessarily the processing, of image content

queries. In addition, we focus on the integration of conventional alphanumeric databases and newer

data types, such as simulation and video data.

Visual Query Languages Most query languages that are labeled as \visual" trace their heritage

back to Zloof's Query-By-Example, developed in the early 1970's [18].

Pasta-3 [9] and the Visual Query Language (VQL) [8] are notable examples of current visual query

languages. However, these systems are geared toward alphanumeric databases, and do not provide

constructs for multimedia or time-based data.

The �eld of visual query languages is the focus of much research [19, 20, 21]. The primary dis-

tinction between MQuery and all of these systems is MQuery's full support for visual querying of

multimedia and temporal or stream data, in addition to the alphanumeric domain.

Database User Interfaces Database user interfaces (DBUIs) unify, into a single interface, nearly

all aspects of database management. DBUIs can be characterized as easier to use and better integrated

because schema viewing, browsing, and querying are seamlessly viewed as a single set of activities.

However, they do not have the same querying power as more narrowly-focused systems.

The MOOSE [22] and ER-DRAW [23] systems represent one aspect of an overall DBUI: schema

design, browsing, and presentation. Although full DBUIs also possess schema facilities, they are, in

general, less powerful than those designed speci�cally for schema interaction. The functionality found

in MOOSE and ER-DRAW is best viewed as a subset of the functionality o�ered by MQuery.

SNAP has perhaps the best overall DBUI functionality [24]. MQuery adds to SNAP's functionality

with extensions such as more complex queries and multimedia and temporal support.

Other DBUIs are present in earlier literature [25, 26]. The DBUI �eld provides strong user interface

elements for databases, but they lack functions that can be found in their more narrowly-focused

6



“abcdefg” is a 
comment

abcdefg

s is a subschema of 
the overall schema

s

A is an entity

A

A has relationship X with B, cardinality m:n

Xm n
BA

A is a subclass of B

B

A

A has an attribute named b

A b

A is an aggregation of B and C

A

B C

mA

m is a method of the entity A

Figure 1: Notational conventions for basic data model constructs.

cousins, such as image and pure visual query languages. We feel that it is easier to integrate image

and visual query functionality into a database user interface than the other way around, so we have

chosen to take this approach in designing MQuery.

User Interface The current windows-icons-menus-pointer interface is being expanded by work on

new paradigms for user interfaces. These include noncommand or active user interfaces [27], gestural

user interfaces [28], voice or audio interfaces [29], and new ways to provide user feedback [30].

3D technology may help database administrators and users in visualizing and navigating large,

complex data models [31, 32]. MQuery was designed with the awareness that this technology will

increase in popularity when it matures.

3 Data Model Overview

We have designed a multimedia data model called M that supports the new and unique concepts in

our query language [33]. We provide only an overview of M herein.

Basic Concepts Our basic data model framework is a synthesis of entity-relationship (ER) and

object-oriented (OO) data models. We have tried to combine the diagrammatic simplicity of ER with

the richer semantics of OO. Figure 1 summarizes the basic ideas and notation behind the model. More

details appear in [33].

Multimedia Types The foundation for the multimedia functionalities in this data model is the

multimedia type. Multimedia types are designed to behave like atomic data types within the system:

7



Figure 2: Structure of an intelligent visual entity.

the database provides all of the operations necessary to transparently manipulate them, just as a user

can manipulate numbers, strings, or characters.

Multimedia types are viewed as encapsulated \black boxes" by the user. They can be presented

on a screen or a speaker, assigned to attributes, compared to other values, or manipulated through

pre-de�ned operations and/or methods. Although the actual implementation of such black box func-

tionality is, internally, much more complex than with numbers or characters, the user-level view of

these operations remains the same.

Intelligent Visual Entities An intelligent visual entity (IVE) is an entity that stores image

representations of itself in the database schema. These image representations are chosen by the

database administrator as \typical" for instances of a particular kind of IVE. We assume that images

in the database have been segmented, either manually or automatically, or preprocessed or on-the-y,

to identify the queryable objects in the image. Visual querying is achieved by comparing an IVE's

library of standard representations to the segmented image regions in the database.

Subclasses of the abstract IVE class may be de�ned for speci�c domains, such as lesions, anatom-

ical regions, etc. These subclasses override or specialize the way an IVE's visual representations

are used to perform image comparisons. For example, IVEs found in medical images might ignore

color information when performing similarity comparisons, since most medical images are entirely

in grayscale. Instead, they may focus purely on size (area) and location in relation to each other.

Figure 2 illustrates the special structure and appearance of an intelligent visual entity.

An IVE has two appearances: as a standard entity (with an icon to show that it is an IVE), and as

a graphic \representative" of that entity's instances. An IVE also has defaults for: its representation,

relevant set of image features (i.e. brightness, texture, area, etc.), and, if necessary, methods that

determine similarity with other image objects. The latter are set by the database administrator or

designer when de�ning the IVE, and come into play during image query processing.

8



Multistream

stream n

element . . .

.

.

.

substream 1

element . . .

stream with substreams

. . . substream nsubstream 1 substream 2

.

.

.

stream

element . . .

multimedia
types

simulation
model

other domains
timelines

substream 2

element . . .
substream n

element . . .

frequency

stream 1

element . . .

current time

stream 2

element . . .

time

Figure 3: Graphical diagram of abstract stream entity types and their internal structures.

For example, a tumor IVE may de�ne itself as being similar to another tumor if their areas and

positions are within some threshold of each other. The user may override this default similarity

measure at query time.

Streams A stream is an ordered, �nite sequence of entities or values . These entities or values

are called elements of the stream. The sequencing is temporal: in other words, elements ei and ej

of a stream entity S are distinguished by i and j being di�erent instances in time. This temporal

ordering is further described by a frequency , indicating the speed by which the elements of the stream

travel through time, along a time scale that can be di�erent for di�erent streams. Streams also have

the notion of a current time from which the current element in the sequence can be determined |

particularly useful when iterating over a stream's elements or when the passage of time is halted within

a stream (i.e. viewing individual frames of a movie loop, for example).

Figure 3 illustrates the notation for some of our basic stream-related constructs.

9



4 Sample Application and Prototype

We now describe a sample application to show how the new constructs improve the usability and

clarity of a database schema. The application is taken from the medical domain; other work that uses

our new modeling concepts can be found in the literature [34, 35].

4.1 Domain and Requirements

The example domain presented here is based on a multimedia database for thermal ablation therapy

of brain tumors that has been developed by our group.

Thermal ablation therapy is the use of focal heating for the treatment of tumors. Techniques for

thermal ablation of brain tumors were pioneered in the 1960's, and have been further re�ned since then

[3]. The procedure is particularly important in the treatment of brain tumors, where invasive surgery

is either impossible or poses the risk of severe brain damage. Using specially designed interventional

magnetic resonance instruments, a radiofrequency (RF) electrode is directed into the tumor with MR

guidance. Instead of the usual surgical craniotomy exposure, a 2mm twist drill hole is used for access

in the skull of the patient, who remains awake during the procedure.

The sample schema presented in this section maintains the data that are relevant to the thermal

ablation therapy application domain. The database can store patient records and images, associate

them with each other, and perform queries based on features such as tumor volume or histology. The

schema also supports simulations of the heat transfer process that occurs during therapy.

4.2 Discussion of Schema

Figure 4 shows the overall thermal ablation therapy schema that we have developed as a testbed.

The schema herein is actually a subset of a larger project between the UCLA Computer Science

and Radiological Sciences Departments; a larger, broader data model spanning many other areas of

medical imaging is currently under development.

4.2.1 Patients and Health Care Activities

The standard representation of a patient is shown in Figure 4. An individual Patient undergoes zero

or more Health Care Activity instances. Patients have attributes such as an ID, name, and many

others.

10



Figure 4: Sample schema using the M data model for thermal ablation therapy data management, showing

tool palettes for drawing the schema on the left.

The sample database keeps track of two types of health care activities: MR Examinations and

Thermal Ablation treatments. MR Examinations generate a set of MRI (magnetic resonance imag-

ing) scans of the patient's brain and tumor. Thus, an MR Image Stack contains representations of

the Patient's Brain State and any Lesion States at the time of the examination. This relationship

shows an application of our multimedia type model. In addition, Brain States and Lesion States

are modeled as intelligent visual entities (IVEs), because they directly correspond to some visible

region of interest in the MR Image Stack.

Thermal Ablations represent instances of thermal ablation procedures performed on the patient.

They include: the number of doses applied, whether or not a biopsy was taken, etc. Measurements

tracking the brain's temperature are also taken during the procedure, and so a Thermal Ablation

contains a stream of temperature values.

4.2.2 Brain, Lesion, and Temperature Streams

Figure 4 illustrates the use of our stream model [35]. For one, as examinations accumulate over

time, individual Brain and Lesion States (essentially snapshots at a particular moment in time) are

11



collected into streams that fully represent, within the requirements of the application domain, the

Patient's Brain and particular Lesions within the Brain.

The Brain entity belongs to an overall aggregation that represents the Patient's anatomical

systems (other anatomical systems are not shown in the Figure 4, but have been modeled by our

group). The Lesion entity belongs under one of the pathologic functions for which a Patient has

processes . In this case, it is a Cerebral Neoplasm disease process which is manifested by one or more

Lesions.

The third use of the stream construct lies in our representation of the Temperature entity as

a stream of individual temperature values. Temperature is used in two places: in the �rst case, a

Thermal Ablation procedure generates a real-world stream of measurements, thus tracking the overall

temperature of the tissue undergoing thermal ablation as it changes over time. Second, Temperature

is one of the data streams of a Lesion Simulation. Lesion Simulations follow our simulation

model, capturing the heat transfer equations that theoretically govern the thermal ablation process.

Thus, instances of Temperature may be directly compared to determine the accuracy of simulated

treatments against measurements taken during actual treatments.

5 Query Language

MQuery is derived from a rich heritage of previous query language work, and thus many of its more

fundamental notions do not radically deviate from current multimedia and visual query languages.

MQuery functions as a superset of these languages, as well as a superset of other query language work

performed by our group.

5.1 Overview

As discussed in Section 2, current research into query languages has expanded into a broad range

of metaphors and paradigms: image query languages, visual query languages, and database user

interfaces. Section 2 also pointed out that this diversity has resulted in systems that excel in speci�c

areas but do not handle others at all.

One of the goals in de�ning MQuery is to integrate the diverse technologies that have been devel-

oped thus far into a single comprehensive system. MQuery's other goals are to design:

� a system that su�ciently supports the M data model and all of its constructs,

12



� a comprehensive database interface that captures the functionality of schema design, browsing,

querying, and output within a uni�ed environment,

� a system that is capable of storing, querying, and presenting all forms of data, particularly

multimedia such as images, audio, and digital video, and

� a system using a visual and user-friendly metaphor, and to support and validate that design

using structured usability testing techniques.

The last three goals correspond precisely to the speci�c goals of database user interfaces, image or

multimedia query languages, and visual query languages respectively. Most systems in the literature

(see Section 2) focus primarily on one of these goals at a time; our intent in MQuery is to apply a

wholistic approach to satisfy all of these requirements.

The general sequence of activities performed by an MQuery user ows in this manner:

1. The user is presented with the overall data model. This represents the data that is available to

the user, as stored in the database's dictionary/directory.

2. When the user is ready to ask a query, a query window is created. The user can drag or copy

elements from the schema diagram to the query window. The query diagram that is built by the

user forms the actual query statement for processing.

3. The user asks the system to insert, retrieve, delete, or update any matching data. The system

responds by fetching the data (sometimes invoking certain specialized modules to accomplish

this task), then presenting the results.

At any point in time, the user may edit the query diagram, invoke another query, or explore the

schema further. The user can use any query result that is currently on display to perform further

queries, perhaps to retrieve similar objects or objects within a narrower scope.

5.2 Schema Design

All schema-related activities in MQuery are initiated through the main schema window , along with

one or more schema tool palettes (as shown in Figure 4). Each tool palette concentrates on a speci�c

set of schema activities, including schema design, browsing, modi�cation, and querying.

The schema window is an interactive representation of the underlying database schema. The

representation is faithful to the notation adopted by the M data model (Section 3). The components

of the schema window may be copied into query windows in order to specify the objects to be queried.

13



Schema design tools \understand" the semantics of the constructs that they draw onto the schema

window. For example, when a relationship is being drawn, the relationship tool does not permit the

user to begin drawing the relationship until the cursor is on the border of an entity. Similar semantic

restrictions apply to other tools.

5.3 Query Formulation

MQuery's most signi�cant contributions include:

� Full-function query language integrated with a full-function schema display: most works on the

literature (see Section 2) focus primarily on one or the other, but not both.

� Full support for entire range of query operations (insert, retrieve, delete, update): most languages

today focus primarily on information retrieval. In reality, this is only a subset of the entire

range of query functionalities; little work has been done on giving operations such as insertion,

deletion, and modi�cation as friendly or visual an interface as the retrieval side. By de�ning a

single construct (the query speci�cation) that is usable by all query operations, MQuery creates

a single interface that is capable of performing all four standard query operations.

� Direct visual support for new data types such as images, sounds, and video: most visual in-

terface systems currently concentrate on alphanumeric data, while the few systems supporting

multimedia or image data have narrowly-scoped query languages.

MQuery also inherits the complete feature set of its predecessor, PICQUERY+, including a hierarchical

knowledge base and use of fuzzy operators [11].

To perform a query, the user de�nes a query speci�cation (examples of which shall be illustrated

throughout this section), then speci�es whether MQuery is to perform an insertion, retrieval, deletion,

or updating on that speci�cation. The same query speci�cation may be used as a basis for any of the

four query actions; of course, the interpretation of the query speci�cation di�ers, depending on the

action.

After MQuery processes the query spec based on the user's desired action, it responds with a set

of output windows. The types of windows displayed as output depend on the query action that was

performed.

While forming a query spec, the user may go back and forth from the schema window to the query

window, or the user may also examine output windows that are already on display due to previously

14



Figure 5: Query-speci�c notation employed by MQuery when forming visual query speci�cations.

processed queries. The notion of user freedom is central in current user interface work [36, 37], and is

also a fundamental design principle in MQuery.

5.3.1 MQuery Visual Notation

The notation or graphical syntax of an MQuery query speci�cation is nearly identical to that of the

M data model that MQuery supports (see Figure 1). However, some notation must be added in order

to support certain query-speci�c constructs, as shown in Figure 5.

The most basic of these constructs is the predicate box, which can be invoked from any MQuery

object. The contents of an object's predicate box determines a constraint on whether or not a particu-

lar instance of that object is to be retrieved. The absence of a predicate box means that no restriction

applies | in other words, \retrieve all."

Though the most apparent use of a predicate box is to specify alphanumeric constraints, we do

not make any such restrictions. The contents of a predicate box are arbitrarily complex | in fact, it

may be an entire instance of the entity or object being constrained. This capability is used by nested

queries, described in Section 5.3.3.

Another fundamental query construct, the result border, can be seen in Figure 5. The result

border is applied to the objects in the query which the user wants returned as the query result. It is

analogous to the SELECT clause of an SQL query.

A �nal query construct that is not present in the schema design portion of MQuery is the IVE

box. An IVE box is used when invoking the visual query capabilities of our model's intelligent visual

15



INSERT

Patient

Figure 6: MQuery for \Manually add new Patients to the database."

entities (IVEs). When the user wishes to ask a \show me objects that look like this"-type of query,

the IVEs involved are selected, their visual appearances are activated, and they are placed within an

IVE box to show their relative positioning and sizing. The query processor interprets this box as a

query predicate which constrains n-tuples of IVEs (where n is the number of IVEs placed in the box)

to those n-tuples that are visually similar to the arrangement in the box.

5.3.2 Insertion Queries

MQuery responds to an insertion query by invoking an insert method for the objects to be added.

By default, this method displays data entry forms to be �lled out by the user. However, insert

methods may be overridden (or alternatives may be de�ned) to customize the insertion process for

di�erent data types.

In general, the literature does not pay much attention to the act of inserting data to a database;

most of the systems in Section 2 assume that the data is already stored in the database, and do

not apply visual interface concepts to this phase of database management. However, some work has

acknowledged that the latest developments in data modeling have resulted in complicated structures

for which insertion is no longer as straightforward [14].

Query 1 Manually add new Patients to the database.

The query window for Query 1 is shown in Figure 6. This is the query used when a user wishes

to add new occurrences of an entity to the system. MQuery responds to this insertion query by

presenting the user with a blank Patient form, containing �elds to be entered by the user.

Query 2 Manually add a new Thermal Ablation treatment to the database; the treatment

was performed on August 5, 1995 on the Patient with ID 555-12-12.

Note in Figure 7 that the constraints in the query spec are speci�ed as if a retrieval query is about

to be performed; however, because the user issues an insert command instead of a retrieve command,

16



INSERT

Patient

undergoes
1

many ID

555-12-12

date

8/5/95

Thermal
Ablation

Figure 7: MQuery for \Manually add a new Thermal Ablation treatment to the database; the treatment

was performed on August 5, 1995 on the Patient with ID 555-12-12."

INSERT

loadStackMR Image
Stack

Figure 8: MQuery for \Use the MR Image Stack entity's loadStack method to add some image �les into

the database."

the system responds by adding new data to the database with the given attributes.

Query 3 Use the MR (magnetic resonance) Image Stack entity's loadStack method to add

some image �les into the database.

Figure 8 illustrates a query where data insertion is not performed manually, as in Query 1, but

automatically, using a method that is de�ned within the entity whose occurrences are to be inserted.

In this case, the loadStackmethod requires a �lename or a list of �lenames from which the MR Image

Stack entity is to read and insert new data. In the case of our sample medical data model, these

�les are likely to be PACS (picture archiving and communication system) images from the UCLA

Department of Radiological Sciences. When Query 3 is run, the user informs the system of the

�lenames of the images to be added. The MR Image Stack's loadStack method takes care of the

data from that point on.

5.3.3 Retrieval Queries

MQuery responds to a retrieval query by retrieving then presenting the requested data to the user.

The query results are reusable: they may be placed in another query or used to modify the current

query. This nesting of queries and results is applicable to all data types, including complex stream or

17



Patient

Figure 9: MQuery for \Display a list of all the patients who are currently in the database."

Patient

undergoes
1

many name

John Smith

date

>= 9/2/95

MR
Examination

Figure 10: MQuery for \Display all MR exams concerning patient John Smith that are dated September

2, 1995 or later."

multistream structures.

Alphanumeric Queries MQuery contributes to this query category by providing a visual inter-

face that simpli�es operations including the equivalents of joins and subqueries.

Query 4 Display a list of all the patients who are currently in the database.

Query 5 Display all MR exams concerning patient John Smith that are dated September 2,

1995 or later.

Query 4 looks exactly like the insertion Query 1 in its graphical form; the only di�erence is that in

Query 1, the request is \insert this," while in Query 4, the request is \retrieve this." Query 5 appears

in Figure 10.

Queries with Multimedia Results

Query 6 Retrieve radiologic images which contain objects similar to the ones that I will place

onscreen, based on size and shape.

Of note in Query 6, Figure 11: (a) the request to \retrieve images" translates visually into re-

questing for a set of MR Image Stacks, and (b) the actual predicate used to select the desired images

is purely visual in nature | it is formed by moving and arranging shapes on the screen.

The shapes shown in Figure 11 illustrate how intelligent visual entities (IVEs) are used in practice.

These icons represent the Brain State and Lesion State entities seen in our sample application

18



is present inmany 1MR Image
Stack

shape

size

Figure 11: MQuery for \Retrieve radiologic images which contain objects similar to the ones that I will

place onscreen, based on size and shape."

schema (Figure 4). In Figure 11, their fully-visual appearance has been activated. The white rectan-

gular area where they reside represents a single visual predicate; in English, that section of the query

speci�es \an individual brain entity and an individual lesion entity whose appearance is as shown on

the screen."

The meaning of \appearance" is determined by the IVEs involved, Brain State and Lesion

State. Each IVE compares the drawn icon to the instances of that IVE in the database by using the

image features de�ned as relevant for similarity comparisons. In Query 6, these features are explicitly

set by the user as size and shape (where shape is based on the characteristics of an icon's contour or

outline). These attributes are chosen from a menu provided by the IVE. Approaches for processing

the query based on di�erent visual attributes are being examined by our group.

When similarity is not explicitly de�ned by the user, IVEs use defaults set by the database designer.

For example, Brain Statemay determine similarity by looking at the area of the brain's outline, while

Lesion State determines similarity by geometrically comparing the lesion's contours. The distance

between the contours' centroids is used as the default metric for their spatial relationship, but this

metric, like image features, can be customized for di�erent combinations of IVEs.

Query 7 Play back voice recordings in images where Dr. Chan recommends chemotherapy.

Query 8 What are the radiologic/imaging appearances of a particular pathology?

For space reasons, we refrain from including full MQuery examples for Queries 7 and 8. In the

context of the example queries that have already been illustrated, translating these queries to MQuery

query speci�cations is not di�cult, given the appropriate schema.

Noteworthy in Queries 7 and 8 are the use of voice objects as transparently as image objects in

Query 7, and, in Query 8, the association of a very abstract object (a given pathology) with images

in the database. These show the generality and applicability of the multimedia type model that we

19



Patient

MR
Examination MR Image

Stack

undergoes
1

many

generates1
many contains

representations of

1 many

shape

doctor

age

sex

Figure 12: MQuery for \Obtain the sex, age, and doctor of all patients with tumors similar in shape to

the tumor currently being viewed."

have de�ned [33]. A special icon, perhaps for a hypothetical \intelligent audio entity" similar to the

IVE de�ned previously, may be used to visualize voice and sound data. This icon can interact with

the user by playing back its encoded sound when double-clicked.

Queries with Multimedia Predicates Multimedia data can be used in MQuery not only as

query results but also as participants in the actual predicates.

Query 9 Obtain the sex, age, and doctor of all patients with tumors similar in shape to the

tumor currently being viewed.

Query 10 Locate other treated lesions in the database similar with respect to size, shape,

intensity, and growth or shrink rate of the current case.

Query 11 Does the lesion overlap any of the activated areas from the functional MRI study?

Figures 12 illustrates the MQuery expression for Queries 9. Query 10 is like Query 9, but takes

more image features into account when performing similarity comparisons.

We have implemented Query 9 and only need more knowledge about lesions to implement Query 10.

Query 11 is quite forward-looking and requires a thorough model of the brain when examined via

functional MRI.

Queries Over Time-Based Data Query 12 does not get \into" the stream structure yet but

accesses it as a single overall entity.

Query 12 Retrieve and play back the thermal ablation simulation results for patient John

Smith for any simulation runs performed after January 10, 1996.

20



Patient Cerebral
Neoplasmhas

processes

1
many

has
1

many

1

Lesion
Simulation

play

many

is simulated by

Lesion

. . .Lesion State

name

John Smith

date

> 1/10/96

Figure 13: MQuery for \Retrieve and play back the thermal ablation simulation results for patient John

Smith for any simulation runs performed after January 10, 1996."

Patient
name

John Smith

Thermal
Ablation

date

2/9/96

u
n

d
erg

o
es

1
m

any

Temperature

Value . . .> 60°

time

Figure 14: MQuery for \When does the tissue in the lesion being treated for John Smith on February 9,

1996 become greater than 60� C?"

Query 12, Figure 13, illustrates how streams may be accessed as self-contained entities. In Fig-

ure 4, Lesion Simulation is derived from our simulation model, where a simulation is de�ned as a

set of parallel streams called a multistream [33]. The method play is invoked from these retrieved

simulations, and this is the output that is presented to the user.

Query 13 When does the tissue in the lesion being treated for John Smith on February 9,

1996 become greater than 60 � C?

The condition (> 60�) in the central element of Temperature seeks the stream elements that satisfy

this condition; the times attached to those elements are returned. The attribute time, by de�nition,

is an attribute of any entity that serves as a stream element (as seen in Figure 3), and so it is not

explicitly mentioned in the sample schema in Figure 4.

Query 14 illustrates the use of streams for making comparisons over time. In Figure 4, the Brain

and Lesion streams have internal stream elements called Brain State and Lesion State, respec-

21



Lesion

. . .Lesion State

Thermal
Ablation

time

> date, < date
+ 3 months size change

< 0

size change

> 0

Patient Cerebral
Neoplasmhas

processes

1
many

has

1

many

un
de

rg
oe

s
1

m
an

y

(may be replaced with conceptual terms, if available)

Figure 15: MQuery for \Find all cases in which a tumor decreased in size for less than three months post

treatment, then resumed a growth pattern after that period."

tively. MQuery's time-based querying is based on this relationship between the overall stream and its

individual elements.

Query 14 does not call upon the IVEs' visual characteristics, but is more complex in terms of the

way it uses time in its predicate. Figure 15 illustrates the MQuery expression for Query 14.

Query 14 Find all cases in which a tumor decreased in size for less than three months post

treatment, then resumed a growth pattern after that period.

Specifying the change in size is done by specifying the desired range on the size change attribute1,

as seen in Figure 15. To express the time constraints, we call upon the built-in time attribute of the

Lesion States: we assign, to one box, the constraint that its time stamp must be within three (3)

months of the date of the patient's thermal ablation therapy. The inclusion of Patient assures that

the thermal ablation treatments and lesions that are linked all belong to the same patient; without the

links provided by Patient, any thermal ablation treatment may be matched with the lesion, regardless

of their respective patients.

There is no need for an additional time predicate for the second box | by its position, it is

implicitly expected to occur after any elements that satisfy the �rst box . Thus, only the size change

> 0 is required; the condition that this growth pattern occurs after the three-month period is already

implied by the positioning of the second box to the right of the �rst one. The time constraint is

1Although this particular value is modeled as an attribute, it may internally be implemented as a method; however the

user does not need to be aware of this.

22



volume
Lesion State
or

Figure 16: MQuery for \What are the volumes of the tumors that were retrieved in the previous query?"

therefore translated from an alphanumeric predicate (such as \time < date + 3 months") to a visual

one, communicated entirely by the relationship between the stream elements.

Alternatively, size change may be queried on a conceptual level (i.e. size change is stable or shows

little change) if a knowledge base mapping these concepts to values or value ranges is a part of the

system.

Nested Queries These queries show how MQuery's integrated modules make it simple to pass

the results of one query into another. This capability is made possible by integrating output and

visualization as a component of the overall MQuery system. Thus, MQuery is \aware" of the windows

within which query results are displayed, and can copy or retrieve the objects from those windows.

Of the queries listed below, we provide MQuery expressions for Queries 15 and 16. Queries 17 does

not have an MQuery expression because it is not based on the sample schema presented in Figure 4.

Query 15 What are the volumes of the tumors that were retrieved in the previous query?

Query 16 Where and when does maximum tissue heating take place for the simulation run

that is currently on display?

Query 17 List other cases that have a meningioma of similar size to the case currently being

viewed.

Figures 16 and 17 present MQuery expressions for Queries 15 and 16. Query results in other

windows are re-used in new queries by using copy-paste or drag-and-drop. The operation is analogous

to query construction, where objects from a schema window are copied then pasted into a query

window.

As can be seen in the �gures, nested queries are achieved by replacing the contents of an entity's

predicate box with one or more speci�c entity occurrences, thus naturally extending the more familiar

functionality of placing an alphanumeric constant or comparison in an attribute's box. Figure 16 is

particularly interesting because it shows how IVEs can also be used in the same manner; note the

23



Temperature

Value . . .

Lesion
Simulation

Run 6/6/97 max

location time

Figure 17: MQuery for \Where and when does maximum tissue heating take place for the simulation run

that is currently on display?"

Patient

Object Relation 
Operator

Object 
Value

Logical 
Operator

Group

doctor = Smith or
doctor = Jones

Cerebral
Neoplasm

has processes
1 many

has

1

many

Lesion

. . .Lesion State

size change

<= -50%

size change

< -75%

Figure 18: MQuery for \Find patients treated either by Dr. Smith or Dr. Jones whose primary lesions

exhibit a decrease in size by at least 50% for every examination since baseline, or have at least one

examination that exhibits a decrease in size by greater that 75%."

multiple Lesion State objects inside the predicate box, indicating a set of Lesion States that have

been copied from query results presumably on display elsewhere on the screen.

Queries With Multiple Predicates

Query 18 Find patients treated either by Dr. Smith or Dr. Jones whose primary lesions exhibit

a decrease in size by at least 50% for every examination since baseline, or have at

least one examination that exhibits a decrease in size by greater that 75%.

Figure 18 shows how compatibility with PICQUERY+ is achieved in MQuery. A PICQUERY+

table is used for Patient instead of an entity rectangle; this is done because a table interface permits

a clear, line-by-line listing of the predicates to be applied to its associated entity.

24



DELETE

Temperature

Value . . .

Lesion
Simulation

Run 6/6/97

index

<= 100

Figure 19: MQuery for \Delete the �rst 100 simulation data points on the simulation currently on display."

5.3.4 Deletion Queries

Entity deletion deletes all of its attributes and any relationships or aggregations pointing to that entity.

MQuery does not recursively delete an object if it participates in chains of relationships. Instead, the

deletion stops at \level one" | the entity itself, and the association, are eliminated, but not the node

on the other end of the association.

Query 19 Delete the �rst 100 simulation data points on the simulation currently on display.

Query 19, Figure 19, may come into play if the validity of a simulation model is being tested, and

the �rst 100 points were discovered to have anomalies that would skew the results of the simulation.

The index attribute, which is used to determine a stream element's position within the overall stream,

is a built-in attribute of any object that participates as a stream element [33].

5.3.5 Update Queries

For update queries, entry forms are opened by MQuery showing the current values of the objects

designated as a \query result." The user then enters the new value for that object. MQuery permits

a minor variant that increases the degree of automation in a modi�cation query: if the object with

a result border is also a predicate box then the value within the predicate box is used as the new,

modi�ed value for that object.

Query 20 Change the ID photograph of Mr. Jones to the one currently shown onscreen, and

replace his timeline image slices for October 10 and November 10 with slice numbers

12 and 14, respectively.

In Figure 20, a photograph already on display is capable of providing an iconic form of itself for

use in the query. This iconic form is a built-in function of any entity that is modeled in the M data

model as the Image multimedia type.

25



UPDATE

Patient

name

Jones

picture

Timeline

. . .Element

time

October 10

time

November 10

slice

12

slice

10

Figure 20: MQuery for \Change the ID photograph of Mr. Jones to the one currently shown onscreen,

and replace his timeline image slices for October 10 and November 10 with slice numbers 12 and 14,

respectively."

Timeline is a multistream| an aggregation of one or more streams, in this case Brain and Lesion.

A multistream can be manipulated as if it were a simple stream whose elements are synchronized

aggregations of the component streams. Thus, in Figure 20, Timeline looks like a simple stream, and

the predicates attached to its elements are applied to all of the elements of its component streams.

In addition, an or operator is required, because the query is actually performing two unrelated

modi�cation queries. Thus, we have the dual predicate boxes attached to the same stream element,

but marked with the thick line representing an or operation.

5.4 Output Presenter & Visualizer

The most signi�cant features of MQuery's presentation and visualization module include the following:

� Support for a wide range of data types. MQuery's presentation and visualization module aims

to support a wider array of data types than previously found in related work. This includes

standard alphanumeric data, complex relationships, multimedia data such as digital audio and

video, and scienti�c data such as simulations, electrocardiograms, Doppler ultrasound, etc. This

broad functionality will be achieved through a modular architecture where new display methods

can be \plugged in" based on a well-de�ned speci�cation or protocol.

� Intelligent visualization of retrieved data. When data needs to be displayed to the user, the

output module �rst checks to see whether the database's administrator or some other user has

26



designed a custom method for displaying the data. If found, it is used to perform the display; if

multiple methods are found, the user is presented with a menu of available choices. If no custom

methods are found, a default display method dynamically assembles a display window for the

query results; the display generated will be based on rules and heuristics that guide the way

di�erent types of data are to be visualized.

� Uni�ed interface for all display needs. Whether the user examines data from the schema window,

inserts new data, or views data from the query window, MQuery's presentation/visualization

package uses the same interface. Even data insertion displays the same windows used for data

retrieval; the only di�erence is that insertion queries generate blank displays that can be �lled

out.

� Full integration with query module. The interaction between query results and the actual query

expression is, unlike most visual query systems, fully bidirectional. Similar to nested queries in

SQL, MQuery results can be sent back into other queries to function either as subqueries or new

values for comparison.

5.5 Implementation and User Evaluation

A subset of MQuery has been implemented in the KMeD system using VisualWorks [38] and Gemstone

[39]. Our testbed database currently resides on a central server, where images, reports, and patient

data are copies of data that reside in a distributed, heterogeneous environment consisting of PACS,

the Radiology Information System (RIS), and the Hospital Information System (HIS) [40]. A fuller

version of MQuery, exhibiting much of the functionality in this paper, is in progress. Image and time-

based query processing is planned using knowledge-based techniques developed at a parallel research

project at UCLA. Because of the broad functionality introduced in MQuery, execution speed and/or

e�ciency is not a major focus in the initial implementation.

After a full MQuery prototype has been implemented, we will execute a user testing and validation

phase that will include students, professors, and practitioners of computer science and radiology. Our

initial experience has shown that, after a brief tutorial describing the model's notation, potential

database users have found M's schema diagrams to be very readable and straightforward to understand.

27



6 Conclusions and Future Work

In this paper, we described MQuery, which provides the following new constructs: an overall multi-

media query language that accesses multimedia types in a uniform manner, intelligent visual entity

querying on appearance without depending on alphanumeric indexing, and query constructs for time-

based information.

All told, the query language concepts introduced in MQuery are applicable to a wide variety

of domains: multimedia digital libraries, medical imaging, medical records (via a visual timeline),

engineering or scienti�c simulations, etc. Further, this broad set of domains is e�ciently served by a

small number of concepts and ideas, particularly multimedia types and streams.

Future work on MQuery includes completion of the implementation and prototype testing of its

query language and output modules. Other research directions for M and MQuery include advanced

visualization, and the inclusion of hypertext or hypermedia data to the overall model.

A Acknowledgments

The authors would like to thank the many colleagues, collaborators, and consultants whose contribu-

tions helped make MQuery into the powerful query language presented in this paper.

� Wesley W. Chu from the Computer Science Department and Ricky K. Taira from the Department

of Radiological Sciences are the co-principal investigators of the UCLA KMeD project, which

motivated the development of M.

� Denise R. Aberle, Gary R. Duckwiler, Jonathan Goldin, Robert B. Lufkin, Michael F. McNitt-

Gray, and Fernando Vi~nuela have been invaluable in developing the database requirements of real-

world medical applications such as cerebral aneurysm embolization, thermal ablation therapy,

and thoracic oncology imaging.

28



References

[1] Ramesh Jain, editor. NSF Workshop on Visual Information Management Systems, February

1992.

[2] Wesley W. Chu, Alfonso F. Cardenas, and Ricky K. Taira, editors. AAAS Workshop on Advances

in Data Management for the Scientist and Engineer, Boston, Massachusetts, February 1993.

National Science Foundation.

[3] Y. Anzai, R. B. Lufkin, A. DeSalles, D. R. Hamilton, K. Farahani, and K. L. Black. Preliminary

experience with MR-guided thermal ablation of brain tumors. American Journal of Neuroradi-

ology, 16(1):39{48, January 1995. Discussion on pp. 49{52.

[4] W. W. Chu, I. T. Ieong, R. K. Taira, and C. M. Breant. A temporal evolutionary object-

oriented data model and its query language for medical image management. In Li-Yan Yuan,

editor, Proceedings of the 18th International Conference on Very Large Databases, pages 53{

64, Vancouver, Canada, August 1992. Very Large Data Base Endowment, Morgan Kaufmann

Publishers, Inc.

[5] Wesley W. Chu, Alfonso F. Cardenas, and Ricky K. Taira. KMeD: A knowledge-based multimedia

medical distributed database system. Information Systems, 20(2):75{96, 1995.

[6] J. Michael Pratt and Maxine Cohen. A process-oriented scienti�c database model. SIGMOD

Record, 21(3):17{25, September 1992.

[7] Department of Health and Human Services, National Institutes of Health, National Library of

Medicine. UMLS Knowledge Sources, August 1992.

[8] Lil Mohan and R. L. Kashyap. A visual query language for graphical interaction with schema-

intensive databases. IEEE Transactions on Knowledge and Data Engineering, 5(5):843{858,

October 1993.

[9] Michael Kuntz and Rainer Melchert. Pasta-3's graphical query language: Direct manipulation,

cooperative queries, full expressive power. In Peter M. G. Apers and Gio Wiederhold, editors,

Proceedings of the 15th International Conference on Very Large Databases, pages 97{105, Ams-

terdam, The Netherlands, August 1989. Very Large Data Base Endowment, Morgan Kaufmann

Publishers, Inc.

[10] Thomas Joseph and Alfonso F. Cardenas. PICQUERY: A high level query language for pictorial

database management. IEEE Transactions on Software Engineering, 14(5):630{638, May 1988.

29



[11] Alfonso F. Cardenas, I. T. Ieong, R. K. Taira, R. Barker, and C. M. Breant. The knowledge-based

object-oriented PICQUERY+ language. IEEE Transactions on Knowledge and Data Engineering,

5(4):644{657, August 1993.

[12] Arturo Pizano, Allen Klinger, and Alfonso F. Cardenas. Speci�cation of spatial integrity con-

straints in pictorial databases. Computer, pages 59{71, December 1989.

[13] Amarnath Gupta, Terry Weymouth, and Ramesh Jain. Semantic queries with pictures: the

VIMSYS model. In Guy M. Lohman, Amilcar Sernadas, and Rafael Camps, editors, Proceedings

of the 17th International Conference on Very Large Databases, pages 69{79, Barcelona, Spain,

September 1991. Very Large Data Base Endowment, Morgan Kaufman.

[14] Deborah Swanberg, Chiao-Fe Shu, and Ramesh Jain. Knowledge guided parsing in video data-

bases. In Keith T. Knox and Edward Granger, editors, IS&T/SPIE's Symposium on Electronic

Imaging: Science & Technology, San Jose, California, USA, January{February 1993. The Society

for Imaging Science and Technology (IS&T) and The International Society for Optical Engineer-

ing (SPIE).

[15] Alberto Del Bimbo, Maurizio Campanai, and Paolo Nesi. A three-dimensional iconic environment

for image database querying. IEEE Transactions on Software Engineering, 19(10), October 1993.

[16] Toshikazu Kato. Database architecture for content-based image retrieval. In Albert A. Jam-

berdino and Wayne Niblack, editors, Image Storage and Retrieval Systems, pages 112{123, San

Jose, California, February 1992. SPIE | The International Society for Optical Engineering; IS&T

| The Society for Imaging Science and Technology, Proc. SPIE.

[17] Wayne Niblack, R. Barber, W. Equitz, Myron Flickner, E. Glasman, D. Petkovic, P. Yanker,

C. Faloustos, and G. Taubin. The QBIC project: Querying image by content using color, texture,

and shape. In Wayne Niblack, editor, Storage and Retrieval for Image and Video Databases, pages

173{187, San Jose, California, 1993. SPIE.

[18] M. M. Zloof. Query-by-example. In Proceedings of the National Computer Conference, pages

431{437, Arlington, VA, May 1975.

[19] Jan Paredaens, Jan Van den Bussche, Marc Andries, Marc Gemis, Marc Gyssens, Inge Thyssens,

Dirk Van Gucht, Vijay Sarathy, and Lawrence Saxton. An overview of GOOD. SIGMOD Record,

21(1):25{31, March 1992.

30



[20] Michele Angelaccio, Tiziana Catarci, and Giuseppe Santucci. QBD*: A graphical query language

with recursion. IEEE Transactions on Software Engineering, 16(10):1150{1163, October 1990.

[21] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: A visual formalism for real life recur-

sion. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 404{416, Nashville, April 1990. Association for Computing Machinery,

ACM Press.

[22] Yannis E. Ioannidis, Miron Livny, and Eben M. Haber. Graphical user interfaces for the man-

agement of scienti�c experiments and data. SIGMOD Record, 21(1):47{53, March 1992.

[23] Victor M. Markowitz and Arie Shoshani. Data management tools for scienti�c applications: An

overview. Technical report, Lawrence Berkeley Laboratory, February 1993.

[24] Daniel Bryce and Richard Hull. SNAP: A graphics-based schema manager. In IEEE Interna-

tional Conference on Data Engineering, pages 151{164, Washington, D.C., February 1986. IEEE

Computer Society, IEEE Computer Society Press.

[25] Harry K. T. Wong and Ivy Kuo. GUIDE: a graphical user interface for database exploration.

In Proceedings of the Eighth International Conference on Very Large Data Bases, pages 22{32,

Mexico City, September 1982. Very Large Database Endowment.

[26] Roger King and Stephen Melville. Ski: A semantics-knowledgeable interface. In Umeshwar Dayal,

G. Schlageter, and Lim Huat Seng, editors, Proceedings of the Tenth International Conference on

Very Large Data bases, pages 30{33, Singapore, August 1984. Very Large Database Endowment.

[27] Jakob Nielsen. Noncommand user interfaces. Communications of the ACM, 36(4):57{71, April

1993.

[28] Rui Zhao. Incremental recognition in gesture-based and syntax-directed diagram editors. In

Stacey Ashlund, Kevin Mullet, Austin Henderson, Erik Hollnagel, and Ted White, editors, Pro-

ceedings of INTERCHI 1993, pages 95{100, Amsterdam, The Netherlands, April 1993. Associa-

tion for Computing Machinery.

[29] Lisa J. Stifelman, Barry Arons, Chris Schmandt, and Eric A. Hulteen. VoiceNotes: A speech in-

terface for a hand-held voice notetaker. In Stacey Ashlund, Kevin Mullet, Austin Henderson, Erik

Hollnagel, and Ted White, editors, Proceedings of INTERCHI 1993, pages 179{186, Amsterdam,

The Netherlands, April 1993. Association for Computing Machinery.

31



[30] Didier Bardon. Management of color usage in dynamic mapping environments: Balancing seman-

tics, visual ordering, and discernability. In T. Catarci, M. F. Costabile, and S. Levialdi, editors,

Proceedings of the International Workshop Advanced Visual Interfaces, pages 50{67, Rome, Italy,

May 1992. World Scienti�c Publishing Co.

[31] George G. Robertson, Stuart K. Card, and Jock D. Mackinlay. Information visualization using

3D interactive animation. Communications of the ACM, 36(4):57{71, April 1993.

[32] Hideki Koike. An application of three-dimensional visualization to object-oriented programming.

In T. Catarci, M. F. Costabile, and S. Levialdi, editors, Proceedings of the International Workshop

Advanced Visual Interfaces, pages 180{192, Rome, Italy, May 1992. World Scienti�c Publishing

Co.

[33] John David N. Dionisio and Alfonso F. Cardenas. A uni�ed data model for representing multi-

media, timeline, and simulation data. To appear, 1996.

[34] Denise R. Aberle, John David N. Dionisio, Alfonso F. Cardenas, Ricky K. Taira, Wesley W. Chu,

Michael F. McNitt-Gray, and Jonathan Goldin. A uni�ed timeline model for multimedia medical

databases. Radiographics, 16(3):669{681, May 1996.

[35] John David N. Dionisio, Alfonso F. Cardenas, Ricky K. Taira, Denise R. Aberle, Wesley W. Chu,

Michael F. McNitt-Gray, Jonathan Goldin, and Robert B. Lufkin. A uni�ed timeline model and

user interface for multimedia medical databases. Computerized Medical Imaging and Graphics,

1996. To appear.

[36] Ben Shneiderman. Designing the User Interface. Addison Wesley, Reading, Massachusetts, second

edition, 1992.

[37] Donald A. Norman. The Design of Everyday Things. Doubleday Currency, New York, paperback

edition, 1988. Previously published as The Psychology of Everyday Things .

[38] ParcPlace Systems, Inc., Sunnyvale, CA. VisualWorks Release 2.0 User's Guide, Cookbook, and

Object Reference, 1994.

[39] Servio Corporation. GemStone Programming Guide, GemStone Version 4.0, June 1994.

[40] A. F. Cardenas, R. K. Taira, and W. W. Chu. Integration and interoperability of a multimedia

medical distributed database system. IEEE Data Engineering, 16:43{47, March 1993.

32


